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One-dimensional irreducible integrals (/~) are computed in the form of 
Mayer f-function polynomials for a general interparticle potential. Obeisance 
to the exact specification of the irreducible integral definition produces 
regularities in the interaction of star graphs with the integration process. 
Tables of/~k for k ~< 5 and test solutions are presented. 
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1. I N T R O D U C T I O N  

T h e  p r o p e r t i e s  o f  n o n i d e a l  c lass ica l  gases  h a v e  b e e n  i n v e s t i g a t e d  b o t h  

e x p e r i m e n t a l l y  a n d  t h e o r e t i c a l l y  t h r o u g h  t he  a g e n c y  o f  t he  v i r ia l  e x p a n s i o n  

o f  t he  s t a t e  e q u a t i o n .  T h e  s u c c e e d i n g  t e r m s  o f  th i s  in f in i t e  p o w e r  ser ies  in  

d e n s i t y  r e p r e s e n t  t h e  c o n t r i b u t i o n s  o f  b i n a r y ,  t e r n a r y ,  etc. ,  i n t e r p a r t i c l e  

co l l i s ions  to  t he  gas  p r e s s u r e .  C o m m o n l y ,  i n v e s t i g a t i o n s  a re  l i m i t e d  to  t h e  

s eve ra l  l o w e s t - o r d e r  t e r m s ;  t he se  a re  suff ic ient  to  d e s c r i b e  n o n p o l a r  gases  at  

dens i t i e s  b e l o w  t h e i r  c o n d e n s a t i o n  p o i n t s .  
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The limits of experimental determination of the virial coefficients arise 
from the difficulty of making precise measurements at low pressure or den- 
sity. (1) In particular, only the second and third virial coefficients are usually 
extractable. Analytic solutions for the infinite set of virial coefficients are 
available for a few special and simple forms of the intermolecular potential. (2-~) 
Coefficients deriving from more realistic or complex potentials (e.g,, the 
Lennard-Jones 12-6 potential) are available as numerical solutions and are 
frequently limited to several lowest-order terms. (1's-8) 

A major avenue for numerical solution of virial coefficients is based upon 
their statistical mechanical derivation. In the late 1930's Mayer and co- 
workers (9) were able to derive an exact theoretical relationship between the 
coefficients and the molecular potential acting between particle pairs. This 
computation was, in essence, a very useful reordering of terms in the definition 
of the system's partition function. The result is that the coefficient of the 
(k + 1)th power of the density is given by 

-KT[k / (k  + 1)1/3 k (1) 

The flk are called "irreducible cluster integrals" and are given by 

The integrand consists of the sum over all products of pairs of particles such 
that, within each product, every particle has a minimum of two interaction 
connections. Between the ith and j th  particles, the energy function U~j(r) 
exists and the contribution to the integrand is through a Mayer f-function: 

fs(r)  = e-  ~-~/r)/~T _ 1 (3) 

where T is the temperature and K the Boltzmann constant. To evaluate (2), 
one has to know the allowed bondings of k + 1 distinguishable particles into 
multiply connected clusters and be able to perform the integrations over 
particle positions in space. This is a formidable program; in n dimensions, 
as the index k increases, the number of terms in the integrand increases by a 
value of order k 2 and the number of integrations increases as n(k + 1). 

In most previous computational studies numerical values off~j(r) have 
been inserted into Eq. (2) with the consequent expression of each virial 
coefficient as a single number. It will be shown in this paper that there are 
further opportunities in the calculation of virial coefficients. The interaction 
of the integration process with the set of star graphs may be studied in a 
mathematically rigorous way. The method is independent of the particular 
form of f~j(r). Contrary to the usual practice, the f-function of (3) will be 
taken as the independent variable and the irreducible integrals will be ex- 
pressed in the polynomial form /~k = / ~ ( f ) .  Calculations of polynomials of 
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f-functions for the lower-order ~k are known ~1~ for first-neighbor interaction 
in several dimensions. Unlike the present study, however, the polynomial 
coefficients have not been related to variations within a class of  potential 
functions and also the infinite/3~ set was not presentable. 

To demonstrate the computational technique and to retain a sufficient 
basis for testing the result, two system conditions are admitted: The calcula- 
tions are made in one dimension and discrete lattice sites are introduced. The 
lattice property converts the integrals of gq. (2) to summations and the single 
dimension of the system simplifies the particle binding logic. No adjustments 
of  the definition (2) are otherwise made. 

The next section details the translation of the Mayer definition into 
computer language. Section 3 presents the programming output and the/3~ 
for a number of  test potentials. Section 4 briefly considers further usage of 
the technique and some of its limitations. 

2. C O M P U T A T I O N A L  C O N S I D E R A T I O N S  

2.1. General  Plan 

For both analytic and computational ease (2) is rewritten with a notation 
from graph theory(11-13~: 

~ = ~-~. ~... ~+~ ( ~  ~o S~+~,~,o(~ f)~+~.~,o) (4) 

The set of  multiply connected bondings between k + 1 labeled particles is 
known as the set of star graphs 3 of k + 1 labeled points. The summation 
over l[k + 1 <~ l <~ �89 + 1)] counts stars with k + 1 points and differing 
numbers of bonds, while 0 counts the number of topologically different stars 
that have the same values o f k  + 1 and l. The star degeneracy $1~+l,~,o is an 
integer equal to the number of  ways of relabeling the points of  the (k ~ 1, 
l, 0)th star such that the bonding between points is unaltered. A lattice 
spacing (one dimensional volume) of  unity has been chosen in (4) so a 
spacing constant will not appear explicitly in the tabulated results. 

The need for computer evaluation of Eq. (4) is seen when it is realized 
that the number &al lowed configurations of k + 1 labeled points is of order 
{[(k + 1)/2]N} ~+ ~, where Nis  the force range, expressed as a number of  sites. 
For a second neighbor range (N = 2) and five particles (k = 4), for example, 
there are about 3 x 10 3 configurations. Between the five particles a maximum 
of ten bonds can exist and there are ten five-point star graphs. ( ~  The number 
of  operations that must be performed is therefore greater than l0 s . 

3 A star graph is a connected linear graph with no articulation points, i.e., it has no points 
at which all the bonds can be severed, leaving disconnected graphs. 
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2.2. F o r c e  L a w s  

The general two-particle potential for a one-dimensional lattice gas can 
be written as a function of separation distance r: 

U A r )  = Vo ~(r) + g l  a(r - 1) + u2 ~(r - 2)  + ... (5)  

where r is measured in lattice site units, 

8 ( r - j )  = if r # j  (6) 

and the U~ are constants. The corresponding Mayer f-function is 

{ 1 [Uo S(r) + U1 $(r - 1) + U2 S(r - 2) + ...]} - f i r )  = exp -~--~ 1 (7) 

One form of Eq. (7) that lends itself readily to computer study is the Nth- 
neighbor force (N finite), for which 

Uo 8(r) + U~ 8(r - 1) + ... + Us 8(r - N), r < N 
U~,(r) = 0, r > N (8) 

Such a force imposes a natural limit on the size of  the cluster of k + 1 
particles through the multiple-connectedness requirement of the star graphs. 
The fik for first-, second-, third-, and higher-neighbor forces are one sequence 
of results to be exhibited in Section 3. The second-neighbor irreducible 
integrals (written/~k(2)), for example, will be polynomials in products of the 
three Mayer f-functions: 

fo = e-V0mr - 1, f l  = e-VlJKT -- 1, f2 = e-V~/Kr _ 1 (9) 

A second class of potential functions are those with an infinite force 
range. A meaningful way must be found to limit the number of placements of 
particles in these cases, for the force law itself no longer sets a maximum 
cluster width. The chosen example of this type is the Curie-Weiss force( TM 

_- j" + oo, r = 0 
U,j(r) (10) 

-Uc~/N,  r r 0 

which has the pair of Mayer functions fo andfc:  

f o  = - 1, f c  = e - U c w / N K T  -- 1 (11) 

Here N is the total number of particles in the system, a constant for the 
purposes of this computation. The fik for the Curie-Weiss force are computed 
for k + 1 particles which are allowed to be, sequentially, on 1, 2, 3 ..... n 
sites; /?k]. is the designation for the n-site system. The value of fik in an 
infinitely large system will be found by taking both the limits of N and n 
becoming infinitely large. A further interest of the Curie-Weiss potential is 
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its independence of dimensionality; performing the computation in one 
dimension leads to a result valid in higher dimensions. 

2.3. S tar  Graphs 

The general enumeration and classification of star graphs and their 
degeneracies is an unsolved problem, although tabulations of stars having 
two through seven points are availableJ 6'~2~ 

The programs written for the present study require both the degeneracy 
numbers and the bonding specifications for each graph in the set with k + l 
points. The bonding is entered into the program with an exclusion-inclusion 
matrix, in which the presence of a zero (or one) in the ith row andj th  column 
relates that the j th  bond is missing (or present) from the ith graph. Bonding 
input for the six-point graphs (k = 5), for example, consists of a 56 x 15 
matrix with this method. 

3. RESULTS 

When finite range potentials of the form (8) with N = 1 and N = 2 are 
introduced, the very general polynomials shown in Appendix A are generated. 
A number of regularities, such as the appearance of the star degeneracies as 
coefficients in the first-neighbor functions, are identifiable. Greater insight 
may be achieved, however, if a general, physically motivated limitation is 
superposed on the computer evaluations. It will be appreciated that the 
impenetrability property-- the restriction that two or more particles shall not 
occupy the same lattice site--is required by many physically pertinent force 
functions. In the present framework this condition is introduced by taking 
U0 = +oe and fo = - 1 .  Great simplification is achieved in the computer 
output now, for signed numbers have been introduced and the algebraic 
addition of graph contributions leads to term cancellations. Such N-neighbor, 
"hard  core"  integrals,/~ (u~, are given in Appendix B. 

The irreducible integrals for the hard core, nearest-neighbor (N = 1) 
test case are derivable analytically. This is so because the quasichemical 
approximation for a three-dimensional nearest-neighbor gas is an exact solu- 
tion of the one-dimensional gasY 5~ The pressure for this gas may be written as 

P = i n  I + y  
K---T 1 + 7 -- 2,o (12) 

where 

72 = 1 + 4flp(1 -- p) (13) 

and p is the gas density. By expanding the derivative of the pressure and 
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using Mayer's relation between this derivative and the irreducible integrals, 

1 ap 
K r  Op = 1 - Z k#kPk (14) 

it is possible to show that 

/ 2 n \  n 

Equation (15) was verified by the computer program for k ~< 5. It is also 
verifiable as a special case of the more general/~(k 1) of Appendix A. From the 
computer results it was learned that the value (15) derives entirely from 
configurations of k + 1 particles on just  two sites, despite the fact that 
allowed cluster widths can be as great as (the integer less than or equal to) 
(k + 3)/2. Thus, the net contribution to the nearest-neighbor virial co- 
efficients from all particle configurations wider than the force range is zero. 

The functions compiled in Appendix B reveal that many additional 
regularities were created by the single physical condition invoked. It is noted 
that all the terms in fi~m having only a single f-function type-- the " p u r e "  
terms--are simply duplications of the first-neighbor (N = 1) terms given by 
(15). For the "mixed"  f-function terms, no encompassing tangency to ana- 
lytic work is available. There are suggestive trends, however. Inspection of 
Appendix B shows that the coefficients offl2f21 in fi~2) all satisfy (k 3_2)(k + 1), 
the coefficients ofJ'12f22 satisfy (k!3)(k + 1), and the coefficients offl3f21 
satisfy 4(~33)(k + 1). A general form for fl~m is not derivable at once from 
the present tabulations, but the computer method in conjunction with graph 
theory may allow a step-by-step advance on the relation between force laws 
and virial coefficients. 

A more specific, but often-studied test case is recoverable if all the f~ in 
fi~s) are set equal to - 1 '  this yields the irreducible integrals of a one- 
dimensional, hard-rod lattice gas. It is possible to show (4) that the theoretical 
form for hard-rod irreducible integrals is 

fi~N) = - - ( l l k ) [ (N  + 1) k+~ -- N ~+1] (16) 

This result is obtained numerically from the functions of Appendices A and B. 
These can be exploited further by considering a potential which consists of an 
infinitely repulsive core force and a noninfinite but repulsive N-neighbor force: 

= f U o  = +oo, r = 0 (17) 
U,s(r) /.u = const = U1 = U2 . . . . .  ON, r = 1, 2 ..... N 

This potential leads to the Mayer function set: 

I - l ,  r = 0 (18) 
f ( r )  = e -luim~ - 1, r = 1,..., N 
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When u is large or Tis  small, re-'U"Krl << I and the N-neighbor form of f ( r )  
raised to any power l can be expanded as 

.f~(r) = (--1)z + (--1)~-l(1)e- '~'~Kz + (--1)z-2(~)e-2Ju'/Er +. . .  (19) 

Such a "ha rd  and soft"  repulsive force can be investigated theoretically. 
Its analysis involves the sums called alternating moments of the star de- 
generacies, (~,x2~ some of which are known. In Appendix C severa l /3J  ~ are 
given for the "ha rd  and soft"  repulsion gas when only the first-order term 
in e -i<'Kr is kept. 

The Curie-Weiss potential introduced in Section 2.2 produces the/~]~ 
of Appendix D, where n is the number of sites in the lattice. Inspection of 
the results for k = 2 and k = 3 leads to the supposition that the forms for 
arbitrary n are 

+f24(n7 1 ) -9(n7 1)}fo 

For the lower-order virial coefficients, (20) suggests that the strongest n 

dependence of the coefficients offo in/3~]~ is (n -k 1), which varies as n ~. 
% 

\ ] 

For large n, fc z ~ n -z, so that all the terms containingfc vary at least as 1In. 
For n -+ Go it is thus suggested that 

lim Pal. = - � 89  (21) 
r~--+ o o  

Analytic studies on the Curie-Weiss system show that ~2,~) 

lim flk],~ = - 1/k (22) 
n ~ c o  

for all k. This result for the irreducible integrals of the Curie-Weiss potential 
is valid, of course, only in the single-phase state. 

4. P R O S P E C T S  A N D  L I M I T A T I O N S  

The computation point of view presented above introduces an inter- 
mediate level at which the statistical mechanical underpinning of state 
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equations can be attacked. In the f-function polynomial method one has 
less than the total abstraction of the Mayer definition to study but more than 
the reduction of the problem to a single number. There are indications that 
the application of combinatorial analysis to the computed polynomials is 
likely to be fruitful. The present framework also provides test cases that 
further tabulations of star graph properties should meet. Direct extensions 
to higher dimensionalities and to higher-order virial coefficients of the method 
are foreseeable. 

At present the limitations to the f-polynomial method arise from: (i) the 
few star graph properties known, (ii) the increase in output term complexity, 
and (iii) computer resource ceilings. None of these is an intrinsic limit. The 
first difficulty--that we have no information on star graphs of more than 
seven points--impacts all virial coefficient computer studies based on the 
Mayer theory. In principle, stepwise tabulation to any desired star graph 
order should be possible. The increase in monomial term complexity follows 
from the expansion of the permissible f-function set and from increases in the 
star graph order. As the simpler polynomial coefficients are understood, the 
more complex will be approachable. Last, time and storage capabilities of 
available computers may be taxed by the large tables and large number of 
arithmetic manipulations that are called for by increasing graph order and 
polynomial length. The expansion of computer technology and availability 
will remove this shortcoming. 

APPENDIX A. /~N) 

First Neighbor 

1 
~ )  = ~,, [lfoaf* ~ + 6fo~f~=l 

/3~ t '  = [lfo~f~ ~ + 6fo~f~ ~ + 3fo f~ + 24fo~f~ ~ + 36foZf~ . . . .  
.3 I.. 

+ 8 f o %  ~ + 48fo~f? + 6 fo~ f?  + 24foVr + ~8fo~162 
1 

~x~ = ~ [1J~~ ~ + lOfogJ~. ~ + 45fosf ,  ~ + lOOfoVf~ ~ + 70fo~f9 ... 
- r ; .  

+ 12fosf  o + 60fo6f 2 + 360 fos f2  + 540fo4f,2 + 240fo3f~ . . . .  

+ 40fo6f~ 3 + 240fo~f~ 3 + 840fo4f~ 3 + 880foaf~ ~ + lOfo~f~ . . . .  

+ 60joSf~ ~ + 450fo~f~ 4 + 1300foaf~ ~ + 840foZf~ "t + 360fo~f~ ~ ... 

+ 120fo'f~ ~ + 600fo~f~ ~ + 1200fo% ~ + 720fo% ~ + 2 0 f o %  ~ ... 

+ lOOfo3fifl + 240fo2f~ 8 + 260fo~f~ 6 + lOOfo~ ~] 

1 15 0 /3~ ~' = ~.~ [ l f g  f~ + 15fo~4f~ ~ + 105fo~3fx ~ + 455J~2f~ ~ + 1335fo~Jft ~ ... 

+ 2697fo~~ ~ + 3535fogft ~ + 2445foaf~ ~ + 720ff .f~ . . . .  
+ 60fo% o + 1 2 0 f j o A  ~ + 1200fo~f~ ~ + 5400roSA .... 
+ 13,080fovf 2 + 15,960fo6f  2 + 9000foSf z + 1800fo4f~ . . . .  



Exact Calculation of One-Dimensional Irreducible Integrals 79 

+ 120fo~~ a + 1200fo~f~ a + 5400fo~f ,  a + 14 ,880fovA a ... 

+ 28,680fo~fz a + 30,960]o~f~ a + 13 ,320fo~f ,  a + 60fo~~ ~ ... 

+ 600foof ,  '* + 2700foaf~ 4 + 9000fovf~ '~ + 27,780fo~f~ ~ ... 

+ 59 ,040fos fz  ~ + 60,060fo~f~ ~ + 2 2 , 3 2 0 f o a f ,  ~ + 5400fo~fz ~ ... 

+ 1 2 f J o f ~  + 120fo~f  s + 5 4 0 f o ~ f ~  + 3 1 2 0 f o v f  s + 17 ,940fo , f~  . . . .  

+ 56,664fo~f~ ~ + 96,420fo~f~ s + 77 ,040foafz  s + 28 ,080fo~f ,  ~ ... 

+ 840fovf~ ~ + 8400fo~fz"  + 32,160fo~f~ ~ + 69,960fo~.f~ * ... 

+ 89,880foaf~ ~ + 5 3 , 0 4 0 f o z f )  + 9720fo~f~ ~ + 1200fo~  ~ ... 

+ 240foVf,  v + 2 6 4 0 f o ~ f J  + l O , 8 0 0 f o s f ,  v + 26,880fo~f~ v ... 

+ 4 3 , 6 8 0 f o a l ,  v + 41 ,400fo2fz  7 + 19,440fo~f~ v + 3 2 4 0 f o ~  ... 

+ 30fbvf~ ~ + 420j'o~f~ a + 1890fosf~ ~ + 5400fo4f ,  s + lO, 140foaJ;fl ... 

+ l l , 430fo=f~  ~' + 6900fo~f ,  ~' + 1710fo~  a + 2 0 f o ~ f 9  ... 

+ 120fo~f~ ~ + 420fo4f ,  ~ + 880foaf~ ~ + lO20fozfz ~ ... 

+ 600fo~fl  ~ + 140/o~ ~1 

Second Neighbor 

3~ 2~ = 3~" + ~,. [6s176 + 6f01f,% =] 

1 .  0 4 1 
,8~a 2' = 3~ ~' + [72fo*fz2f2 ~ + 96 fo ' f ,  af2 * + 12fo Yl f2 "'" 

.3[. 

+ 12Jo~fx4f~ ~ + 36fo2f~~ + 24foafz~ = + 72fo~ + 96fozf ,  zf22 ... 

+ 4 8 f o ~  + 24fo~f,  af22 + 48fo2f~~ + 8fo3f,~ a + ]8 fo~176  ... 

+ 24fo*f~~ ~ + 6fo=f,~ 

/~2) = 5{1) + I [ 7 2 0 f o o f 2 f  ~ § 3 6 0 f o a l  ~f Q + 2 6 4 0 f o 2 f  afz ~ + 7 2 0 f o a l  3fzz ... 

+ 480fo~ ~ + 1200foz f~f21  + 2820fouf ,4f~ ~ + 4 2 0 f o a f ~ f 2  * + 720fo~ ~ ... 

+ 1680fo*f~f~  ~ + l O 8 0 f f f , ~ f ~  ~ + 120foaJi~fz * + 140foOf,~f~ * + 300fo*f~f~  * ... 

+ 180fo~f,~f~ ~ + 20foafl~fz I + 2 4 0 f o a f ~ ~  + 540fo4f~~ ~ + 360fo~f~~ 2 ... 

+ 60fo~f,~ z + 1440fo~J~f~ ~ + 3000fo=f,~fz = + 1080foaf~zf~ ~ + 3360foZf,  afz ~ ... 

+ 3480foZfzaf~ ~ + 600foaf~af~ = + 960fo~ = + 3480folfz~f~ z + 1500fo~fz~f~ 2 ... 

+ 120foafl4f~ ~ + 720fo~ 2 + 1080fo~f~ fz  = + 360fo~f~sf2 ~ + 60fo~ . . . .  

+ 120fo*fz~f~ ~ + 60fo=f,~f~ ~ + 880foaf~~ a + 840fo~fz~ a + 240fosf~~ a ... 

+ 40fo6f ,~  a + 720 fo~  a + 2 1 6 0 f o i f ~ f 2  a + 2040fo~f~=fz a + 360Joafzzf~ ~ ... 

+ 1760fo~ a f f  + 2880fo*f~af2 ~ + 1080fo~f,  af~ a + 200foafzaf= a + lO00fo~ a ... 

+ 1080fo~f,~fu a + 240fo=fz~f~ a + 4 0 f o a f ~ f f  + 120 fo~  a + 120fo~f~sfz a ... 
+ ~60foY~% ~ + 840fo=f~% ~ + ~300fo~f~% ~ + 450fo%Of= ~ + 60fo~f,~ . . . .  

+ lOfo~f,~ ~ + 600fo~ ~ + 840fo~f~uf~ ~ + 240fo~f,~f2 ~ + 240fo~ ~ ... 

+ 360fol f?f~ ~ + 120foV?f~ ~ + 3 0 f o % %  ~ + 6 0 f o 7 ~ %  ~ + 30fo=f~% ~ ... 

+ 720fo~f~~ ~ + 1200fo2fl~ ~ + 600foaf~~ ~ + 120fo~f~~ ~ + lOOfo~176 ~ ... 

+ 260fo*f ,~ ~ + 240fo=f,~ ~ + lOOfoaf~~ ~ + 20fo~f~~ 

A P P E N D I X  B. /3~ ~) FOR H A R D  CORE POTENTIAL 

Second Neighbor  (N  = 2) 

/3~ m = - ( 1  - 2 f ,  - -  2f2)  

,8~ 2~ = - - �89  + 6f~ 2 + 6.I"22 -- 6f~2f2 ~) 

3'# ~ = - - ~ 0  - -  6A ~ --  6f~ ~ --  2 O f ?  --  20f~ ~ + 3 6 A %  ~ + 1 2 f ~ f ~  ~ ... 

+ 48f~V~ ~ -- 1 2 f ? f ~ )  
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/3~ '  = - � 8 8  + 4 0 f ~  3 + 4 0 f 2  ~ + 7 0 f ~  * + 7 0 f s  ~ - 6 O f f ' f 2  ~ . . .  

- 8 O f f , f 2  ~ - 3 2 0 t i ~ f ~  z - 4 0 f z ~ f z  3 + 8 0 f ~ s f ~  2 - 2 8 0 f ~ f ~  ~ . . .  

+ 40.1"13.['23 + 190f~43'~ 2 - 2 O f f , f 2 3 )  

/3~2~ = - k ( ~  - 2 O f ?  - 2 0 f 2 3  - 2 ~ O A  ' - 2 1 0 f 2  ' - 2 5 2 f ~  5 - 2 5 2 f 2 6  .. .  

+ 3 0 f ~ 2 f ~  ~ + ~ 8 0 f ~ 2 f ~  2 + 7 2 0 f ? f ~  ~ + 3 0 0 f ~ 2 f ~  3 - ~80 f~3 f2~  . . .  

+ 2 4 0 0 f z ' ~ f ~  ~ + 1 5 0 f ~ 2 f z  4 - 3 0 0 f ~ 3 f 2 3  - 2 1 0 0 f ~ a f 2 ~  + 1 4 4 O f f ' f 2  ~ . . .  

- 1 5 0 f ~ f z  ~ - 1 2 0 f ~ a f 2  ~ - 1 7 7 O f f , f 2 2  + 9 0 f z ~ f 2 4  + 5 4 0 f ~ s f z  3 . . .  

- 3 0 f ~ 6 f ~ * )  

Third Ne ighbor  (N  = 3) 

/3,3~ = _ � 8 9  _ 6 ~  _ 6 f ~  _ 6f52 _ 2 0 f ?  - 20 I~  3 - 20f33 + 3 6 f ~ 2 A  ~ . . .  

+ 12fa=fu  2 - -  1 2 f ~ f 5 2  - -  12 f22 f32  + 4 8 f ~ a f ~  1 - -  1 2 f ,  af2  = + 7 2 f , ~ f = ~ f a  ~ . . .  

+ 1 2 f ~ f 2 z f s ~  + 4 8 f , ~ f 2 1 f a  ~ - -  1 2 f ,  a fa  ~ + 4 8 f ~ f z ~ f a  ~ - -  6 0 f ~ 2 f 2 2 f 3  ~ . . .  

- -  2 4 f ? f ~ * f ~ *  - -  ~ 2 f ? f 2 = f 3 2  - -  1 2 A 2 f 2 * f 3 =  - -  ~ 2 f ~ % %  ~) 

Fourth Ne ighbor  (N  = 4)  

/3~a 4'  - -  /3~a a '  - � 8 9  - 2 0 f 4 3  + 3 6 f 2 2 f ~  ~ + 4 8 f 2 3 f 4  ~ - 1 2 f , 2 f a  2 . . .  

+ 1 2 f = = A  ~ - 12 f~=f ,=  - 1 2 f ~ 3 f , ~  + 7 2 f ~ * f ~ y ,  ~ - 3 6 f ~ f ~ * f , *  . . .  

+ 4 8 f , 2 f a ~ f 4  ~ + 4 8 f * * f a 2 f 4  ~ - -  36 f2~ fa2 f4~  + 4 8 f ~ * f a * f 4 2  . . .  

- -  2 4 f , = f ~ 2 f , ~  - -  1 2 f ~ % = A 1  - 1 2 f , % y , ~  - 1 2 f , % ~ f , =  . . .  

- 7 2 f , ~ f 2 * f s * f ~  ~ - 9 6 f ,  z f2~fa~f~  ~ - 7 2 f ~ f z z f a x f a ~  . . .  

- 4 8 / ~ * f ~ * f , 2 f , ~  - 2 4 f l % 2 f 3 y ,  ~ - 1 2 f , = f 2 ~ f 3 2 f ,  ~) 

A P P E N D I X  C. /~m W I T H  H A R D  CORE A N D  " S O F T "  
N - N E I G H B O R  R E P U L S I O N  4 

First Ne ighbor  (N  = 1)  

/3~z~ = - ( 3  - -  2 a ) ,  /3~i~ = - - � 8 9  - 1 2 a ) ,  /3~z~ = - � 8 9  - -  4 8 a )  

/3~z~ = - � 8 8  - -  1 6 0 a ) ,  /3~z) = - - ~ ( 6 3  - -  4 8 0 a )  

Second Ne ighbor  (N  = 2) 

/3~) = - ( 5  - 4 a ) ,  / 3 ~  = - � 8 9  - 4 2 a )  

/3~) = - � 8 9  - 2 8 8 3 ) ,  / 3 ~  = - + ( 2 1 1  - 1 6 2 0 a )  

A P P E N D I X  D. p~ FOR T H E  C U R I E - W E I S S  P O T E N T I A L  

k = 2  

#2]J_ = - - � 8 9  /32]2 = - - � 8 9  + 3f~ 2) 

/32]3 = - - � 8 9  + 6 L  2 - -  2 f c 3 ) ,  /32h  = - ~ - ( 1  + 9 i t  ~ - -  6 L  3) 

/32]5 = - - � 8 9  + l Z L  2 - 1 2 L 3 ) ,  /32]6 = - � 8 9  + 15fo~ - 2 0 L  3) 

k = 3  

/3511 = - � 8 9  /33]2 = - � 8 9  - 3 fc  2 - l O f t s ) ,  /33]3 = - � 8 9  - 6 fc  z - 8f~ 3 + 2 4 f ;  ~) 

4 a ~ e - [ U [ l K T .  
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/33]4 = - k ( z  - 9 L  2 + 6 L  3 + 6 3 L  4 - 1 8 L  ~ - 3 L  ~) 

/33]s = -�89 - 12f~ 2 + 32f~ 3 + 108fc 4 - 72fc 5 - 12f~ 6) 
k = 4  
/3411 = -�88 /34]2 = -�88 + 20f~ 3 + 35f~ 4) 
/34]3 = -�88 + 20fc 3 - 90f~ * - 180f~ ~ + 10f~ 6) 
/34]4 = -�88 - 315f~ ~ - 180f~ 5 + 450f~ 6 + 60fJ)  
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